Diffusion Kernels on Graphs and Other Discrete Input Spaces

نویسندگان

  • Risi Kondor
  • John D. Lafferty
چکیده

The application of kernel-based learning algorithms has, so far, largely been confined to realvalued data and a few special data types, such as strings. In this paper we propose a general method of constructing natural families of kernels over discrete structures, based on the matrix exponentiation idea. In particular, we focus on generating kernels on graphs, for which we propose a special class of exponential kernels called diffusion kernels, which are based on the heat equation and can be regarded as the discretization of the familiar Gaussian kernel of Euclidean space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffusion Kernels on Graphs and Other Discrete Structures

The application of kernel-based learning algorithms has, so far, largely been confined to realvalued data and a few special data types, such as strings. In this paper we propose a general method of constructing natural families of kernels over discrete structures, based on the matrix exponentiation idea. In particular, we focus on generating kernels on graphs, for which we propose a special cla...

متن کامل

Convolution Kernels on Discrete Structures

We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings, trees and graphs. The method can be applied iteratively to build a kernel on a innnite set from kernels involving generators of the set. The family of kernels generated generalizes the family of radial basis kernels. It can also be used to deene kernels in the form of joint Gibbs proba...

متن کامل

Deriving Neural Architectures from Sequence and Graph Kernels

The design of neural architectures for structured objects is typically guided by experimental insights rather than a formal process. In this work, we appeal to kernels over combinatorial structures, such as sequences and graphs, to derive appropriate neural operations. We introduce a class of deep recurrent neural operations and formally characterize their associated kernel spaces. Our recurren...

متن کامل

Convolution Kernels on Discrete Structures UCSC CRL

We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings trees and graphs The method can be applied iteratively to build a kernel on a in nite set from kernels involving generators of the set The family of kernels generated generalizes the family of radial basis kernels It can also be used to de ne kernels in the form of joint Gibbs probabili...

متن کامل

Diffusion Kernels

Graphs are some one of the simplest type of objects in Mathematics. In Chapter Chapter ?? we saw how to construct kernels between graphs, that is, when the individual examples x ∈ X are graphs. In this chapter we consider the case when the input space X is itself a graph and the examples are vertices in this graph. Such a case may arise naturally in diverse contexts. We may be faced with a netw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002